Saturday, 30 April 2011

Algorithmic Comp. Piece 2 Research - Choas Functions

For my final year piece iv been researching choatic functions and non-linear maps. Below is a selection of function iv ported into Lisp. Each function outputs a text file that can be imported into most graphing software (the corresponding pictures were all produced with MATLAB). I intend to implement these functions and use there output to drive a piece of music.

The Logistic Equation


(with-open-file (*standard-output* "logistic.txt" :direction :output
:if-exists :supersede)
(let* ((x 0.5)
(r-env '(0 1 1000 4.0))
(r 0.0))


(loop for i below 1000 do
(setf r (envelope-interp i r-env)
x (* r (* x (- 1 x))))
(format t "~D ~D~%" r x)
)))

The Henon Map


(with-open-file (*standard-output* "henon.txt" :direction :output
:if-exists :supersede)
(let* ((x 0.1)
(y 0.1)
(a 1.4)
(b 0.3)
(z 0.0))

(loop for i below 500 do
(setf z x
x (-(+ y 1) (* a (* x x)))
y (* b z))

(format t "~D ~D~%" x y))))

The Lorenz Attractor


(with-open-file (*standard-output* "lorenz.txt" :direction :output
:if-exists :supersede)
(let* ((x1 0.0)
(y1 1.0)
(z1 0.0)
(dt 0.001)
(x 0.0)
(y 0.0)
(z 0.0)
(a 10)
(b (/ 8 3))
(p 28))

(loop for i below 1000 do
(setf x (+ x1 (* (* a (- y1 x1)) dt))
y (+ y1 (* (- y1 (* x1 (- p z1))) dt))
z (+ z1 (* (- (* x1 y1) (* b z1)) dt))
x1 x
y1 y
z1 z)

(format t "~D ~D ~D~%" (* 1000 x) (* 1000 y) (* 1000 z)))))


The Ikeda Map

(with-open-file (*standard-output* "ikeda.txt" :direction :output
:if-exists :supersede)
(let* ((x 1.0)
(y 1.0)
(u 0.95)
(z 0.0)
(b 0.0))
(loop for i below 1000 do
(setf z x
b (- 0.4 (/ 6 (+ 1 (+ (* x x) (* y y)))))
x (+ 1 (* u (- (* x (cos b)) (* y (sin b)))))
y (* u (+ (* z (sin b)) (+ y (cos b)))))

(format t "~D ~D~%" x y))))

The Tent Map

(with-open-file (*standard-output* "tent.txt" :direction :output
:if-exists :supersede)
(let* ((x 0.5)
(u 0.0)
(u-env '(0 1 1000 2.0)))

(loop for i below 1000 do
(if (< x 0.5)
(progn
(setf u (envelope-interp i u-env)
x (* u x))
(format t "~D ~D~%" x u))
(progn
(setf u (envelope-interp i u-env)
x (* u (- 1 x)))

(format t "~D ~D~%" u x))))))

The Gauss Iterated Map

(with-open-file (*standard-output* "gauss.txt" :direction :output
:if-exists :supersede)
(let* ((x 0.0)
(a 6.2)
(b-env '(0 -1 500 1))
(b 0.0))

(loop for i below 500 do
(setf b (envelope-interp i b-env)
x (+ b (exp(* (* -1 a) (* x x)))))
(format t "~D ~D~%" i x))))

The Tinkerbell Map

(with-open-file (*standard-output* "tinkbell.txt" :direction :output
:if-exists :supersede)
(let* ((x -0.72)
(y -0.64)
(a 0.9)
(b -0.6013)
(c 2)
(d 0.5)
(z 0.0))

(loop for i below 2500 do
(setf z x
x (+ (* b y) (+ (* a x) (- (* x x) (* y y))))
y (+ (* d y) (+ (* c z) (* 2 (* z y)))))

(format t "~D ~D~%" x y))))

The Rabinovich-Fabrikant Equation


The graph may not look like those from other resources but that's because it was not ran over enough iterations, changing the loop value to over 1000 produces the main graph shape.
(with-open-file (*standard-output* "rabfab.txt" :direction :output
:if-exists :supersede)
(let* ((x1 -1.0)
(y1 0.0)
(z1 0.5)
(dt 0.01)
(x 0.0)
(y 0.0)
(z 0.0)
(a 0.14)
(g 0.1))

(loop for i below 1000 do
(setf x (+ x1 (* (+ (* g x1) (* y1 (+ (* x1 x1) (- z1 1)))) dt))
y (+ y1 (* (+ (* g y1) (* x1 (- (+ (* 3 z1) 1) (* x1 x1)))) dt))
z (+ z1 (* (* (* 2 -1) z1) (+ a (* x1 y1)) dt))
x1 x
y1 y
z1 z)

(format t "~D ~D ~D~%" (* 1000 x) (* 1000 y) (* 1000 z)))))

The Torus Knot


(with-open-file (*standard-output* "torus.txt" :direction :output
:if-exists :supersede)
(let* ((x 0.0)
(y 0.0)
(z 0.0)
(r 0.0)
(q 5)
(p 2)
(phi 0.0)
(phi-env '(0 0 1000 6.283)))

(loop for i below 1000 do
(setf phi (envelope-interp i phi-env)
r (+ (cos (* q phi)) 2)
x (* r (cos (* p phi)))
y (* r (sin (* p phi)))
z (sin (* q phi)))

(format t "~D ~D ~D~%" x y z))))

The Van Der-Pol Oscillator
(with-open-file (*standard-output* "vdp.txt" :direction :output
:if-exists :supersede)
(let* ((x1 0.5)
(y1 1.0)
(x 0.0)
(y 0.0)
(u 6.0)
(dt 0.1))

(loop for i below 10000 do
(setf x (+ x1 (* (* u (- (- x1 (* (/ 1 3) (* x1 (* x1 x1)))) y1)) dt))
y (+ y1 (* (* (/ 1 u) x1) dt))
x1 x
y1 y)

(format t "~D ~D~%" y x))))

No comments:

Post a Comment